Skip to main content
The University of British Columbia
UBC - A Place of Mind
The University of British Columbia
Faculty of Science Department of Zoology

Main navigation

  • About
    • Message from Head
    • Department History
    • News
    • Publications
    • ZOOTAILS - the zoology newsletter
    • Welcome New Faculty
    • In Memoriam
    • Departmental Announcements
    • Contacts and Information
    • Jobs
    • Buildings
    • Transportation & Parking
  • People
    • People
    • Faculty - Research
    • Faculty - Educational leadership
    • Lecturers
    • Staff
    • Graduate Students
    • Postdoctoral Fellows
    • Associate Members
    • Adjunct Members
    • Affiliate Members
    • Research Associates
    • Research Lab staff
    • Emeriti
    • Alumni
    • Awards
  • Research
    • Research
    • Facilities
    • Affiliated Research Centres
    • Graduate Theses
  • Undergraduate Program
    • Undergraduate Program
    • Undergraduate Research Opportunities
    • Biology Program
    • UBC Sciences – Biology
  • Graduate Program
    • Graduate Program
    • Prospective Students
    • Newly Admitted Students
    • Current Students
    • Program Policies & Procedures
    • Student Resources
    • Department Forms
    • Zoology Graduate Student Association
    • Student Stories
    • Contacts
  • Events
    • Events
    • Weekly Seminars
    • Special Seminars and Events
    • CELL seminars
    • Discussion Groups
    • Calendar
    • Event Archive
  • Resources
    • Biostats and Data Science Faculty search (CWL login)
    • Resources
    • Safety
    • Onboarding
    • Workday
    • Building access: keys and cards
    • Room and Vehicle Bookings: Biosci & BRC (log in)
    • Room Bookings: North & East wings Biosci
    • Shipping & Receiving
    • Staff Directory
    • Aquatics (private)
    • Computing (ZCU)
    • Finance
    • HR: Human Resources
    • Equity, Diversity and Inclusion Resources
    • Harassment and Discrimination complaints: steps and resources
    • Zoology Internal pages (private)
    • Recycling initiatives
    • Zoology Logo
    • Zoology Workshop
  • CWL Login

Breadcrumb

Home
»
About
»
News

Main Menu: Secondary

  • Message from Head
  • Department History
    • About the "Huts"
  • News
  • Publications
  • ZOOTAILS - the zoology newsletter
  • Welcome New Faculty
  • In Memoriam
  • Departmental Announcements
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
  • Contacts and Information
  • Jobs
    • Past jobs
  • Buildings
  • Transportation & Parking

New publication: Sakarchi & Germain. The American Naturalist

January 14, 2025
Figure 1.Clarifying confusion about differences between attack rates, consumption rates, and utilization (A–D). A and C depict the attack rate functions of two consumers, red (consumer i) and blue (consumer j), where A shows how resource abundance determines how many resources are consumed by each species at any moment in time (B) while C shows how resource exploitability determines how resources are consumed by each species at resource equilibrium (D; determining utilization rates; see “Utilization Functions”). E shows an underpacked community where some resources are underutilized, leaving the community susceptible to invasion, whereas F presents a community of species that fully utilize available resource production and thus are fully “packed.” The gap in gray between Rk and the summed utilization functions represents the 𝒰 component of 𝒬 (see “Community Utilization”).

Jawad Sakarchi and Rachel M. Germain. 2025. MacArthur’s Consumer-Resource Model: A Rosetta Stone for Competitive Interactions. The American Naturalist

Abstract
Recent developments in competition theory—namely, modern coexistence theory (MCT)—have aided empiricists in formulating tests of species persistence, coexistence, and evolution from simple to complex community settings. However, the parameters used to predict competitive outcomes, such as interaction coefficients, invasion growth rates, and stabilizing differences, remain biologically opaque, making findings difficult to generalize across ecological settings. This article is structured around five goals toward clarifying MCT by first making a case for the modern-day utility of MacArthur’s consumer-resource model, a model with surprising complexity and depth: (i) to describe the model in uniquely accessible language, deciphering the mathematics toward cultivating deeper biological intuition about competition’s inner workings regardless of what empirical toolkit one uses; (ii) to provide translation between biological mechanisms from MacArthur’s model and parameters used to predict coexistence in MCT; (iii) to make explicit important but understated assumptions of MacArthur’s model in plain terms; (iv) to provide empirical recommendations; and (v) to examine how key ecological concepts (e.g., r/K-selection) can be understood with renewed clarity through MacArthur’s lens. We end by highlighting opportunities to explore mechanisms in tandem with MCT and to compare and translate results across ecological currencies toward a more unified ecological science.

Department of Zoology
#3051 - 6270 University Blvd.
Vancouver, BC Canada V6T 1Z4
604 822 2131
E-mail zoology.info@ubc.ca
Back to top
The University of British Columbia
  • Emergency Procedures |
  • Terms of Use |
  • UBC Copyright |
  • Accessibility