Skip to main content
The University of British Columbia
UBC - A Place of Mind
The University of British Columbia
Faculty of Science Department of Zoology

Main navigation

  • About
    • Message from Head
    • Department History
    • News
    • Publications
    • ZOOTAILS - the zoology newsletter
    • Welcome New Faculty
    • In Memoriam
    • Departmental Announcements
    • Contacts and Information
    • Jobs
    • Buildings
    • Transportation & Parking
  • People
    • People
    • Faculty - Research
    • Faculty - Educational leadership
    • Lecturers
    • Staff
    • Graduate Students
    • Postdoctoral Fellows
    • Associate Members
    • Adjunct Members
    • Affiliate Members
    • Research Associates
    • Research Lab staff
    • Emeriti
    • Alumni
    • Awards
  • Research
    • Research
    • Facilities
    • Affiliated Research Centres
    • Graduate Theses
  • Undergraduate Program
    • Undergraduate Program
    • Undergraduate Research Opportunities
    • Biology Program
    • UBC Sciences – Biology
  • Graduate Program
    • Graduate Program
    • Prospective Students
    • Newly Admitted Students
    • Current Students
    • Program Policies & Procedures
    • Student Resources
    • Department Forms
    • Zoology Graduate Student Association
    • Student Stories
    • Contacts
  • Events
    • Events
    • Weekly Seminars
    • Special Seminars and Events
    • CELL seminars
    • Discussion Groups
    • Calendar
    • Event Archive
  • Resources
    • Biostats and Data Science Faculty search (CWL login)
    • Resources
    • Safety
    • Onboarding
    • Workday
    • Building access: keys and cards
    • Room and Vehicle Bookings: Biosci & BRC (log in)
    • Room Bookings: North & East wings Biosci
    • Shipping & Receiving
    • Staff Directory
    • Aquatics (private)
    • Computing (ZCU)
    • Finance
    • HR: Human Resources
    • Equity, Diversity and Inclusion Resources
    • Harassment and Discrimination complaints: steps and resources
    • Zoology Internal pages (private)
    • Recycling initiatives
    • Zoology Logo
    • Zoology Workshop
  • CWL Login

Breadcrumb

Home
»
About
»
News

Main Menu: Secondary

  • Message from Head
  • Department History
    • About the "Huts"
  • News
  • Publications
  • ZOOTAILS - the zoology newsletter
  • Welcome New Faculty
  • In Memoriam
  • Departmental Announcements
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
  • Contacts and Information
  • Jobs
    • Past jobs
  • Buildings
  • Transportation & Parking

New publication: Potvin et al. Integrative Organismal Biology. See abstract...

March 17, 2021

Jean Potvin, David E Cade, Alexander J Werth, Robert E Shadwick, Jeremy A. Goldbogen. 2021. Rorqual lunge-feeding energetics near and away from the kinematic threshold of optimal efficiency. Integrative Organismal Biology

Abstract
Humpback and blue whales are large baleen-bearing cetaceans which use a unique prey-acquisition strategy - lunge feeding - to engulf entire patches of large plankton or schools of forage fish and the water in which they are embedded. Dynamically, and while foraging on krill, lunge-feeding incurs metabolic expenditures estimated at up to 20.0 MJ. Because of prey abundance and its capture in bulk, lunge feeding is carried out at high acquired-to-expended energy ratios of up to 30 at the largest body sizes (∼27m). We use bio-logging tag data and the work-energy theorem to show that when krill-feeding at depth while using a wide range of prey approach swimming speeds (2 to 5m/s), rorquals generate significant and widely varying metabolic power output during engulfment, typically ranging from 10 to 50 times the basal metabolic rate of land mammals. At equal prey field density, such output variations lower their feeding efficiency 2- to 3-fold at high foraging speeds, thereby allowing slow and smaller rorquals to feed more efficiently than fast and larger rorquals. The analysis also shows how the slowest speeds of harvest so far measured may be connected to the biomechanics of the buccal cavity and the prey’s ability to collectively avoid engulfment. Such minimal speeds are important as they generate the most efficient lunges.

And a companion paper published in late 2020:
J Potvin, DE Cade, AJ Werth, RE Shadwick, JA Goldbogen. 2020. A perfectly inelastic collision: bulk prey engulfment by baleen whales and dynamical implications for the world's largest cetaceans. American Journal of Physics 88 (10), 851-863

Abstract
The largest animals are the rorquals, a group of whales which rapidly engulf large aggregations of small-bodied animals along with the water in which they are embedded, with the latter subsequently expulsed via filtration through baleen. Represented by species like the blue, fin, and humpback whales, rorquals can exist in a wide range of body lengths (8–30 m) and masses (4000–190,000 kg). When feeding on krill, kinematic data collected by whale-borne biologging sensors suggest that they first oscillate their flukes several times to accelerate towards their prey, followed by a coasting period with mouth agape as the prey-water mixture is engulfed in a process approximating a perfectly inelastic collision. These kinematic data, used along with momentum conservation and time-averages of a whale's equation of motion, show the largest rorquals as generating significant body forces (10–40 kN) in order to set into forward motion enough engulfed water to at least double overall mass. Interestingly, a scaling analysis of these equations suggests significant reductions in the amount of body force generated per kilogram of body mass at the larger sizes. In other words, and in concert with the allometric growth of the buccal cavity, gigantism would involve smaller fractions of muscle mass to engulf greater volumes of water and prey, thereby imparting a greater efficiency to this unique feeding strategy.

Department of Zoology
#3051 - 6270 University Blvd.
Vancouver, BC Canada V6T 1Z4
604 822 2131
E-mail zoology.info@ubc.ca
Back to top
The University of British Columbia
  • Emergency Procedures |
  • Terms of Use |
  • UBC Copyright |
  • Accessibility