Skip to main content
The University of British Columbia
UBC - A Place of Mind
The University of British Columbia
Faculty of Science Department of Zoology

Main navigation

  • About
    • Message from Head
    • Department History
    • News
    • Publications
    • ZOOTAILS - the zoology newsletter
    • Welcome New Faculty
    • In Memoriam
    • Departmental Announcements
    • Contacts and Information
    • Jobs
    • Buildings
    • Transportation & Parking
  • People
    • People
    • Faculty - Research
    • Faculty - Educational leadership
    • Lecturers
    • Staff
    • Graduate Students
    • Postdoctoral Fellows
    • Associate Members
    • Adjunct Members
    • Affiliate Members
    • Research Associates
    • Research Lab staff
    • Emeriti
    • Alumni
    • Awards
  • Research
    • Research
    • Facilities
    • Affiliated Research Centres
    • Graduate Theses
  • Undergraduate Program
    • Undergraduate Program
    • Undergraduate Research Opportunities
    • Biology Program
    • UBC Sciences – Biology
  • Graduate Program
    • Graduate Program
    • Prospective Students
    • Newly Admitted Students
    • Current Students
    • Program Policies & Procedures
    • Student Resources
    • Department Forms
    • Zoology Graduate Student Association
    • Student Stories
    • Contacts
  • Events
    • Events
    • Weekly Seminars
    • Special Seminars and Events
    • CELL seminars
    • Discussion Groups
    • Calendar
    • Event Archive
  • Resources
    • Biostats and Data Science Faculty search (CWL login)
    • Resources
    • Safety
    • Onboarding
    • Workday
    • Building access: keys and cards
    • Room and Vehicle Bookings: Biosci & BRC (log in)
    • Room Bookings: North & East wings Biosci
    • Shipping & Receiving
    • Staff Directory
    • Aquatics (private)
    • Computing (ZCU)
    • Finance
    • HR: Human Resources
    • Equity, Diversity and Inclusion Resources
    • Harassment and Discrimination complaints: steps and resources
    • Zoology Internal pages (private)
    • Recycling initiatives
    • Zoology Logo
    • Zoology Workshop
  • CWL Login

Breadcrumb

Home
»
About
»
News

Main Menu: Secondary

  • Message from Head
  • Department History
    • About the "Huts"
  • News
  • Publications
  • ZOOTAILS - the zoology newsletter
  • Welcome New Faculty
  • In Memoriam
  • Departmental Announcements
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
  • Contacts and Information
  • Jobs
    • Past jobs
  • Buildings
  • Transportation & Parking

New publication: Eom & Wood. Fish Physiology and Biochemistry

December 18, 2023
Figure 3. Measured and calculated respiratory parameters (means ± 1 S.E.M.), averaged over 10-min intervals in trout during 4 h of recovery from exhaustive exercise (N = 10). (A) Oxygen consumption rate, ṀO2 (one-way repeated measures ANOVA p < 0.0001); (B) Ventilation flow rate, V̇w (one-way repeated measures ANOVA p < 0.0001); (C) Ventilatory stroke volume, Vsv (one-way repeated measures ANOVA, p < 0.0001); (D) Ventilatory frequency, fr (one-way repeated measures ANOVA, p = 0.7026); (E) Oxygen utilization, % U (one-way repeated measures ANOVA, p = 0.9997). In each panel, means sharing the same letters are not significantly different (p > 0.05, Tukey’s test). The dashed lines indicate the mean values for the similarly handled control fish (from Fig. 2) for reference

Eom, J., Wood, C.M. The first direct measurements of ventilatory flow and oxygen utilization after exhaustive exercise and voluntary feeding in a teleost fish, Oncorhynchus mykiss. Fish Physiology and Biochemistry

Abstract
A new “less invasive” device incorporating an ultrasonic flow probe and a divided chamber, but no stitching of membranes to the fish, was employed to make the first direct measurements of ventilatory flow rate (V̇w) and % O2 utilization (%U) in juvenile rainbow trout (37 g, 8ºC) after exhaustive exercise (10-min chasing) and voluntary feeding (2.72% body mass ration). Under resting conditions, the allometrically scaled V̇w (300 ml kg−1 min−1 for a 37-g trout = 147 ml kg−1 min−1 for a 236-g trout exhibiting the same mass-specific O2 consumption rate, ṀO2) and the convection requirement for O2 (CR = 4.13 L mmol−1) were considerably lower, and the %U (67%) was considerably higher than in previous studies using surgically attached masks or the Fick principle. After exhaustive exercise, V̇w and ṀO2 approximately doubled whereas frequency (fr) and %U barely changed, so increased ventilatory stroke volume (Vsv) was the most important contributor to increased ṀO2. CR declined slightly. Values gradually returned to control conditions after 2–3 h. After voluntary feeding, short-term increases in V̇w, Vsv and ṀO2 were comparable to those after exercise, and fr again did not change. However, %U increased so CR declined even more. The initial peaks in V̇w, Vsv and ṀO2, similar to those after exercise, were likely influenced by the excitement and exercise component of voluntary feeding. However, in contrast to post-exercise fish, post-prandial fish exhibited second peaks in these same parameters at 1–3 h after feeding, and %U increased further, surpassing 85%, reflecting the true “specific dynamic action” response. We conclude that respiration in trout is much more efficient than previously believed.

Department of Zoology
#3051 - 6270 University Blvd.
Vancouver, BC Canada V6T 1Z4
604 822 2131
E-mail zoology.info@ubc.ca
Back to top
The University of British Columbia
  • Emergency Procedures |
  • Terms of Use |
  • UBC Copyright |
  • Accessibility